data.Rd
Built-in data
olympic_game
tokyo2020
medals
beijing2022
summer_games
winter_games
An object of class tbl_df
(inherits from tbl
, data.frame
) with 53 rows and 7 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 6900 rows and 7 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 1747 rows and 6 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 3785 rows and 6 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 43248 rows and 7 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 18628 rows and 7 columns.
TODO
# slug for the recent 5 summer games
olympic_game %>% dplyr::filter(season == "Summer") %>% dplyr::pull(slug) %>% head(5)
#> [1] "tokyo-2020" "rio-2016" "london-2012" "beijing-2008" "athens-2004"
# Female single swimmer leaderboard
tokyo2020 %>%
dplyr::filter(sport == "swimming",
stringr::str_detect(event, "women"),
!is.na(name),
rank %in% c("G", "S", "B")) %>%
dplyr::count(name, rank) %>%
tidyr::pivot_wider(names_from = "rank", values_from = "n", values_fill = 0) %>%
dplyr::select(name, G, S, B) %>%
dplyr::arrange(desc(G), desc(S), desc(B))
#> # A tibble: 27 × 4
#> name G S B
#> <chr> <int> <int> <int>
#> 1 Ariarne Titmus 2 1 0
#> 2 Katie Ledecky 2 1 0
#> 3 Emma Mckeon 2 0 1
#> 4 Kaylee Mckeown 2 0 0
#> 5 Yui Ohashi 2 0 0
#> 6 Tatjana Schoenmaker 1 1 0
#> 7 Yufei Zhang 1 1 0
#> 8 Lydia Jacoby 1 0 0
#> 9 Margaret Mac Neil 1 0 0
#> 10 Kylie Masse 0 2 0
#> # … with 17 more rows
# medal board from ...
unique(medals$game) %>% stringr::str_extract("\\d+") %>% min()
#> [1] "1908"
# Beijing winter olympic sports:
unique(beijing2022$sport)
#> [1] "speed-skating" "snowboard"
#> [3] "ski-jumping" "skeleton"
#> [5] "short-track-speed-skating" "nordic-combined"
#> [7] "luge" "ice-hockey"
#> [9] "freestyle-skiing" "figure-skating"
#> [11] "curling" "cross-country-skiing"
#> [13] "bobsleigh" "biathlon"
#> [15] "alpine-skiing"
# how many events are played in each summer/ winter game
summer_games %>% tidyr::nest(rank:result) %>% dplyr::count(game, sort = TRUE)
#> Warning: All elements of `...` must be named.
#> Did you want `data = rank:result`?
#> # A tibble: 6 × 2
#> game n
#> <chr> <int>
#> 1 tokyo-2020 339
#> 2 rio-2016 306
#> 3 london-2012 302
#> 4 beijing-2008 295
#> 5 athens-2004 292
#> 6 sydney-2000 291
winter_games %>% tidyr::nest(rank:result) %>% dplyr::count(game, sort = TRUE)
#> Warning: All elements of `...` must be named.
#> Did you want `data = rank:result`?
#> # A tibble: 6 × 2
#> game n
#> <chr> <int>
#> 1 salt-lake-city-2002 2422
#> 2 beijing-2022 109
#> 3 pyeongchang-2018 102
#> 4 sochi-2014 93
#> 5 vancouver-2010 73
#> 6 turin-2006 61