Compute adjusted clumpy measure using MST
sc_clumpy2(x, y)
# S3 method for default
sc_clumpy2(x, y)
# S3 method for scree
sc_clumpy2(x, y = NULL)
# S3 method for igraph
sc_clumpy2(x, y)
numeric vector of x values
numeric vector of y values
A "numeric" object that gives the plot's clumpy2 score.
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
geom_point() +
facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy2(x,y))
#> # A tibble: 15 × 2
#> feature clumpy
#> <chr> <dbl>
#> 1 barrier 0
#> 2 clusters 0.839
#> 3 discrete 0.493
#> 4 disk 0
#> 5 gaps 0.752
#> 6 l-shape 0
#> 7 line 0.813
#> 8 nonlinear1 0
#> 9 nonlinear2 0
#> 10 outliers 0.525
#> 11 outliers2 0
#> 12 positive 0
#> 13 ring 0
#> 14 vlines 0
#> 15 weak 0
sc_clumpy2(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
#> [1] 0