R/calculate.R
calc_scags_wide.Rd
Compute scagnostics on all possible scatter plots for the given data
calc_scags_wide(
all_data,
scags = c("outlying", "stringy", "striated", "striated2", "clumpy", "clumpy2",
"sparse", "skewed", "convex", "skinny", "monotonic", "splines", "dcor"),
out.rm = TRUE,
euclid = FALSE
)
tibble of multivariate data on which to compute scagnostics
collection of strings matching names of scagnostics to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor
logical indicator to indicate if outliers should be removed before calculating non outlying measures
logical indicator to use Euclidean distance
A data frame that gives the data's scagnostic scores for each possible variable combination.
calc_scags
# Calculate selected scagnostics
data(pk)
calc_scags_wide(pk[,2:5], scags=c("outlying","monotonic"))
#> # A tibble: 6 × 4
#> Var1 Var2 outlying monotonic
#> <fct> <fct> <dbl> <dbl>
#> 1 MDVP:Fhi(Hz) MDVP:Fo(Hz) 0.412 0.796
#> 2 MDVP:Flo(Hz) MDVP:Fo(Hz) 0.172 0.324
#> 3 MDVP:Flo(Hz) MDVP:Fhi(Hz) 0.336 0.0956
#> 4 MDVP:Jitter(%) MDVP:Fo(Hz) 0.289 0.270
#> 5 MDVP:Jitter(%) MDVP:Fhi(Hz) 0.541 0.0978
#> 6 MDVP:Jitter(%) MDVP:Flo(Hz) 0.430 0.407