Compute selected scagnostics on subsets

calc_scags(
  x,
  y,
  scags = c("outlying", "stringy", "striated", "striated2", "clumpy", "clumpy2",
    "sparse", "skewed", "convex", "skinny", "monotonic", "splines", "dcor"),
  out.rm = TRUE,
  euclid = FALSE
)

Arguments

x

numeric vector

y

numeric vector

scags

collection of strings matching names of scagnostics to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor

out.rm

logical indicator to indicate if outliers should be removed before calculating non outlying measures

euclid

logical indicator to use Euclidean distance

Value

A data frame that gives the single plot's scagnostic score.

See also

calc_scags_wide

Examples

# Calculate selected scagnostics on a single pair
calc_scags(anscombe$x1, anscombe$y1, scags=c("monotonic", "outlying"))
#> # A tibble: 1 × 2
#>   outlying monotonic
#>      <dbl>     <dbl>
#> 1        0     0.818

# Compute on long form data, or subsets
# defined by a categorical variable
require(dplyr)
#> Loading required package: dplyr
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
datasaurus_dozen %>%
  group_by(dataset) %>%
  summarise(calc_scags(x,y, scags=c("monotonic", "outlying", "convex")))
#> # A tibble: 13 × 4
#>    dataset    outlying   convex monotonic
#>    <chr>         <dbl>    <dbl>     <dbl>
#>  1 away         0.107  0.795      0.0573 
#>  2 bullseye     0.0555 0.890      0.0787 
#>  3 circle       0.153  0.0117     0.0773 
#>  4 dino         0      0.895      0.0651 
#>  5 dots         0.0518 0.000900   0.126  
#>  6 h_lines      0.0874 0.953      0.0520 
#>  7 high_lines   0.145  0.359      0.00287
#>  8 slant_down   0.0238 0.922      0.0669 
#>  9 slant_up     0.0854 0.914      0.0861 
#> 10 star         0.107  0.555      0.0514 
#> 11 v_lines      0.0234 0.938      0.0566 
#> 12 wide_lines   0.0360 0.311      0.0522 
#> 13 x_shape      0.0743 0.165      0.0205